Def A <u>basis</u> of a vector space V is a set of <u>linearly independent</u> vectors which <u>span</u> V.

e.g. the standard basis of IR^n given by $\overrightarrow{e_i}$, $\overrightarrow{e_2}$, ..., $\overrightarrow{e_n}$.

 $\overline{\text{Thm}}$ If a vector space V is spanned by a finite set S, it has a basis given by a subset of S.

Note In fact, we can find a basis of V as follows:

- · If S consists of linearly independent vectors, it is a basis.
- Otherwise, we remove from S a vector which is a linear combination of the others and start over.

Prop Let A be a matrix.

- (1) If the solution of the equation $\overrightarrow{AX} = \overrightarrow{0}$ is parametrized by $\overrightarrow{X} = t_1 \overrightarrow{V_1} + t_2 \overrightarrow{V_2} + \dots + t_d \overrightarrow{V_d}$ (d = # of free variables) a basis of Nul(A) is given by $\overrightarrow{V_1}, \overrightarrow{V_2}, \dots, \overrightarrow{V_d}$.
- (2) A basis of Col(A) is given by the columns that contain a position of a leading 1 in RREF(A).
- (3) A basis of Row(A) is given by the nonzero rows in RREF(A).

Note The identities $Col(A) = Row(A^T)$ and $Row(A) = Col(A^T)$ yield

- · a basis of Col(A) given by the nonzero rows in RREF(A'),
- a basis of Row(A) given by the columns of A^T that contain a position of a leading 1 in RREF(A^T).

Prop Let A be an mxn matrix with columns $\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_n$.

- (1) $\overrightarrow{V}_1, \overrightarrow{V}_2, \dots, \overrightarrow{V}_n$ are linearly independent
 - \iff RREF(A) has a leading 1 in every column
- (2) $\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_n$ span \mathbb{R}^m
 - \iff RREF(A) has a leading 1 in every row
- (3) $\overrightarrow{V}_1, \overrightarrow{V}_2, \dots, \overrightarrow{V}_n$ form a basis of \mathbb{R}^m
- \Leftrightarrow RREF(A) = I \Leftrightarrow A is a square matrix with det(A) \neq O
- pf (1) This was proved in Lecture 8.
 - (2) $\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_n$ span \mathbb{R}^m
 - \iff Every vector in \mathbb{R}^m is a linear combination of $\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_n$
 - \iff $A\overrightarrow{x} = \overrightarrow{v}$ has a solution for any $\overrightarrow{v} \in \mathbb{R}^m$
 - \iff The linear transformation with standard matrix A is surjective
 - \iff RREF(A) has a leading 1 in every row
 - (3) $\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_n$ form a basis of \mathbb{R}^m
 - $\iff \overrightarrow{V_1}, \overrightarrow{V_2}, \cdots, \overrightarrow{V_n}$ are linearly independent and span \mathbb{R}^m
 - ← RREF(A) has a leading 1 in every column and row
 - \iff RREF(A) = I
 - ⇔ A is a square matrix with an inverse
 - \iff A is a square matrix with $\det(A) \neq 0$

Ex Consider the matrix

$$A = \begin{bmatrix} 2 & 1 & -4 & 2 \\ 4 & 3 & -6 & 8 \\ 3 & 2 & -5 & 5 \end{bmatrix} \text{ with } RREF(A) = \begin{bmatrix} 1 & 0 & -3 & -1 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(1) Find a basis of Nul(A).

<u>Sol</u> We solve the equation $A\overrightarrow{x} = \overrightarrow{o}$ using RREF(A).

$$\begin{vmatrix} X_1 & -3X_3 - X_4 = D \\ X_2 + 2X_3 + 4X_4 = D \end{vmatrix} \Rightarrow \begin{vmatrix} X_1 = 3X_3 + X_4 \\ X_2 = -2X_3 - 4X_4 \end{vmatrix}$$

Set $X_3 = S$ and $X_4 = t$ (free variables)

$$\Rightarrow \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} = \begin{bmatrix} 3s + t \\ -2s - 4t \\ s \\ t \end{bmatrix} = s \begin{bmatrix} 3 \\ -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ -4 \\ 0 \\ 1 \end{bmatrix}$$

 \Rightarrow A basis of Nul(A) is given by $\begin{vmatrix} 3 \\ -2 \\ 1 \end{vmatrix}$, $\begin{vmatrix} 1 \\ -4 \\ 0 \end{vmatrix}$

$$\begin{bmatrix} 3 \\ -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ -4 \\ 0 \\ 1 \end{bmatrix}$$

(2) Find a basis of Col(A).

Sol RREF(A) has leading 1's in column 1 and column 2.

$$\Rightarrow$$
 A basis of Col(A) is given by $\begin{bmatrix} 2\\4\\3 \end{bmatrix}$, $\begin{bmatrix} 1\\3\\2 \end{bmatrix}$ col 1, col 2 in A

(3) Find a basis of Row(A).

Sol The nonzero rows in RREF(A) are row 1 and row 2.

$$\Rightarrow$$
 A basis of Row(A) is given by

Ex Determine whether each set of vectors is a basis of IR3

$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$$

Sol
$$A = \begin{bmatrix} 2 & 3 \\ 4 & -2 \\ 0 & 1 \end{bmatrix}$$
 is not a square matrix.

 \Rightarrow The set is not a basis of \mathbb{R}^3

$$\begin{pmatrix}
2 \\
4 \\
0
\end{pmatrix}, \begin{bmatrix}
3 \\
-2 \\
1
\end{bmatrix}, \begin{bmatrix}
1 \\
5 \\
-1
\end{bmatrix}$$

$$Sol A = \begin{bmatrix} 2 & 3 & 1 \\ 4 & -2 & 5 \\ 0 & 1 & -1 \end{bmatrix} \implies det(A) = 10 \neq 0$$

 \Rightarrow The set is a basis of \mathbb{R}^3

Note We can get the same answer by computing RREF(A)

$$(3) \begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 5 \\ 2 \\ 1 \end{bmatrix}$$

$$\underline{Sol} \quad A = \begin{bmatrix} 2 & 3 & 5 \\ 4 & -2 & 2 \\ 0 & 1 & 1 \end{bmatrix} \implies \det(A) = 0$$

 \Rightarrow The set is not a basis of \mathbb{R}^3

Note We can get the same answer by computing RREF(A)